This page contains a Flash digital edition of a book.
the protozoan cell as a host for multiplication. The latter is considered a possible mechanism by which bacteria have evolved into pathogens in the environment i.e. by practicing on amoebae, which behave similarly to macrophages of the immune system. Dr Roberts is interested in the roles of ion transport proteins in fungal cell biology. The aim is to find ion channels that may serve as biocidal targets, and to further understand the contribution of plasma membrane ion channel proteins to cell growth and development.


Medical Cell Biology The grouping includes research groups whose work is focused on applying biochemical and structural techniques to understanding cellular function at its fundamental level. Particular research interests include corneal transparency and dysfunction, proteoglycan structure and function, the developmental genetics of Drosophila and research into healthy aging.


Dr Nigel Fullwood, Dr Bob Lauder, Dr Gavin Brown, Dr Alan Shirras, Dr Jane Owen-Lynch, Dr David Clancy and Dr Sue Broughton.


Dr Nigel Fullwood’s research centres on the eye and improving treatment for corneal diseases, corneal transplantation and gene delivery within the cornea. He is also involved with the development of an artificial cornea and a vitreous substitute. He has a long standing collaboration with Kyoto Medical University in Japan in projects involving the ex vivo expansion and transplantation of corneal stem cells for clinical use. He is also currently working closely with the spectroscopy company Renishaw in the development of ultra-sensitive biomarker detection systems by using the latest developments in nanotechnology.


The glycobiology group at Lancaster comprising Dr Gavin Brown and Dr Bob Lauder researches the structure and function of glycoproteins and proteoglycans, the latter having key roles in tissue organisation, cell adhesion, cell signalling and host-pathogen interactions. A key objective of the work is to acquire a greater understanding of proteoglycan involvement in a variety of disease processes


108 School of Health and Medicine


including the development of osteoarthritis, neurodegener- ative disease and vision impairment. In addition the group collaborates with Prof Allsop to investigate the role of glycosylated alpha-synuclein in the pathogenesis of Parkinson’s disease, the roles of proteoglycans in amyloid formation and the production of synthetic glycolipids for incorporation into artificial plasma membranes.


Dr Alan Shirras, Dr Sue Broughton and Dr Dave Clancy form the Drosophila research group. Because it shares so much biochemistry and genetics with humans, and because of the unparalleled utility of the genetic tools available, the fruitfly Drosophila melanogaster has proved exceptionally useful. Dr Shirras is studying the developmental genetics of Drosophila melanogaster, with a particular interest in peptide hormone and neuropeptide metabolism. The functions of several processing enzymes are being studied including the role of angiotensin - converting enzyme homologues in spermatogenesis and, with Dr Broughton, in sleep regulation. Dr Broughton and Dr Clancy are seeking to understand the basic mechanisms which cause ageing and the genetic and environmental factors which determine lifespan, and are developing biological markers to monitor healthy aging and aging related diseases. Individually, Dr Broughton is examining the role of insulin/IGF-like signalling in central nervous system ageing, with particular emphasis on age-related cognitive health and lifespan, and Dr. Clancy is manipulating candidate genes to extend healthy lifespan.


Dr Jane Owen-Lynch, in collaboration with colleagues in Physics, studies the dynamics of ageing in the cardiovascular system, mainly at the level of the capillaries. Advances in sensor technology have opened up new approaches for non-invasive monitoring of this blood flow. Recordings of e.g. the electrocardiogram (ECG), respiration, blood pressure, and blood flow signals can be acquired and stored for analysis by the application of a variety of sophisticated algorithms. We now know that blood flow is oscillatory in nature and current work is focused on a detailed understanding of some of the components that contribute to this dynamic process through a study of the endothelial cells of the capillaries.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228
Produced with Yudu - www.yudu.com