food, clothing or even work: in most industrialized countries, commuting accounts for much of the energy used in moving around. Another is to improve the efficiency of the vehicles that are used for transporting people or goods. Airbus, which builds the super-jumbo A380 aircraft, says the industry’s performance on fuel consumption is twice as good as in 1960, and the A380
Compared with ground vehicles, the prospect for replacing kerosene in aircraft engines with low carbon alternatives looks far more diffi cult, from a technological and economic perspective. Potential alternatives must meet high demands: supporting extreme cold, lightweight and low cost (kerosene not being subject to taxation) among others.
Meanwhile engineers and airlines are focussing on improved energy efficiency mainly through better engines, lighter materials, increased capacity and lower fuel consumption (by improving air traffic management and energy-saving fl ying techniques).
To apply market rules and adjust the price of air travel to the impact it generates, making other means of transport more attractive at the same time, is another option for reducing emissions. Although emissions from aviation, just as from shipping, are exempted from the Kyoto Protocol in any country’s emission target, the European Commission has adopted a proposal to include aviation in the EU Emissions Trading Scheme (ETS) from 2011. For the post-Kyoto agreement after 2012, the inclusion of aviation emissions could be one of the political solutions.
In 2006 the Scandinavian airline SAS began testing a new landing approach called Continuous Descent Approach (CDA), where the landing itinerary is known to the crew well enough in advance to let the pilot descend in neutral gear without using the power of the engines until the release of the landing gear. Short-haul jets save an average of 150 kilos of kerosene with this method. SAS has applied
the procedure for 2 000 landing approaches to Stockholm’s Arlanda airport. SAS engineers calculated the potential savings in CO2 emissions would have been more than 50 000 tonnes had all 108 000 landings in the past year been handled in this way. For the time being, CDA is restricted to airports with moderate traffic; improvements in air traffi c control co-ordination are necessary for denser air space. Positive side-effects are improved security as the fl ight routes are known further ahead, and reduced noise pollution. Sweden’s goal is that by 2012 three out of five planes landing in Stockholm should use the CDA method. But further measures will be needed to reach SAS’ target of 20 per cent CO2 reduction by 2020.
uses less than three litres per passenger per 100 kilometres – the figure for a small diesel-engined car. It says the plane’s CO2 emissions are as low as 80g per passenger per kilometre, half the fi gure for an average European car.
This fi gure however does not consider the non-CO2-related climate impact of high altitude fuel combustion which is considered to result in two to four times higher impact than from carbon emissions alone (see page 120).
126 KICK THE HABIT THE CYCLE – REDUCE
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202